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Abstract

There has been no fundamental change in the dynamic indexing methods supporting

database systems since the invention of the B-tree twenty-five years ago. And yet the

whole classical approach to dynamic database indexing has long since become

inappropriate and increasingly inadequate. We are moving rapidly from the conventional
one-dimensional world of fixed-structure text and numbers to a multi-dimensional world

of variable structures, objects and images, in space and time.

But, even before leaving the confines of conventional database indexing, the situation is

highly unsatisfactory. In fact, our research has led us to question the basic assumptions of
conventional database indexing. We have spent the past ten years studying the properties

of multi-dimensional indexing methods, and in this paper we draw the strands of a number

of developments together - some quite old, some very new, to show how we now have the

basis for a new generic indexing technology for the next generation of database systems.

Multi-dimensional indexing

There has been no fundamental change in the dynamic indexing methods supporting

database systems since the invention of the B-tree twenty-five years ago. And yet the
whole classical approach to dynamic database indexing has long since become

inappropriate and increasingly inadequate. We are moving rapidly from the conventional
one-dimensional world of fixed-structure text and numbers to a multi-dimensional world

of variable structures, objects and images, in space and time.

But, even before leaving the confines of conventional (i.e. relational) database indexing, the

situation is highly unsatisfactory. In fact, our research has lead us to question the basic

assumptions of conventional database indexing. The concept of a set of one-dimensional

primary and secondary indexes, tuned to a particular query pattern, emerged in the days of
menu-driven applications. This concept has not evolved in any way to match the flexibility

of 4GL query languages. And today two new factors make such tuning increasingly

impractical: internal system inferencing - where even the system itself cannot predict the
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progressionof queries- andan increasingnumberof very largescaleapplicationswhere
theoverheadof periodicre-indexingisunacceptable.

Of course,menu-drivenapplicationsremain,but therearemany conventionaldatabase
applicationstodaywheremuchmore flexibility is needed.Userswho browsethrougha
databasein an unpredictableway find system performanceequally unpredictable.We
believethat:

. index design should be guided by a natural principle which is intuitively understood by

users: the more information which is given to the system to guide a query, the faster
should be the response.

. the average response time to the set of all possible instantiations of a query is a much

better guide to user acceptability than the fastest time obtainable with one particular
instantiation pattern.

To achieve this kind of performance flexibility without incurring massive additional update
overheads and increased software complexity requires some form of multi-dimensional

indexing. Most recent research on multi-dimensional indexing has been motivated by the
need for better spatial access methods. This has tended to obscure the much more general

attraction of multi-dimensional indexing, which was clearly appreciated by earlier
researchers in the field [1] [2].

The original inventors of the B-tree [3] already had the next step in mind: an index which
would generalize the properties of the B-tree to n dimensions i.e. an index on n attributes of

a record instead of one. Ideally, such an index should have the property that, if values are
specified for m out of n key attributes (a partial match query), then the time taken to find

all the records matching this combination should be the same, whichever combination of m

from n is chosen. The attraction of such an index is that it narrows the search space evenly
over all the indexed attributes, and so behaves as if there were an index on each attribute -

while avoiding all the update complication of secondary indexes. It also greatly reduces the
need to re-index - or multiply-index - large data sets on different attribute combinations.

To achieve this, the index must be symmetrical in n dimensions. There is no longer a

directly defined ordering between the individual records according to their (single key)

attribute values. Each record must be viewed as a point in an n-dimensional data space,
which is the Cartesian product of the domains of the n index attributes. An n-dimensional

generalization of the B-tree must recursively partition this data space into sub-spaces or

regions in such a way that the properties of the B-tree are preserved, as far as is
topologically possible. Specifically, the number of nodes encountered in an exact-match

search of the tree (assuming no duplicates), or a single update, should be logarithmic in the

total data occupancy of the tree; and the occupancy of each data or index region should not
fall below a fixed minimum.
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Thechallengehasthereforebeento generalizetheB-treeto n dimensions while preserving

all of its worst-case characteristics. But a solution has proved very elusive. Alternative

approaches of every kind have been proposed (see, for example, [4] [5] ), but all have been

vulnerable to pathological cases.

In the past this was largely an academic issue. But now it is becoming a matter of life and

death. Large databases control mission-critical and non-stop applications of every kind -

from fly-by-wire aircraft control systems to electricity supply load balancing. There is no

room any more for systems which work very well most of the time. They must be

completely predictable all the time.

This consideration provides justification enough for commercial database companies to

cling to the B-tree. It may be inflexible, but it has the essential qualities of being totally

predictable and fully dynamic. Whatever advantages an alternative may have, it must
demonstrate these same qualities before it has any hope of replacing the B-tree. For these

reasons, and a number of others - even more compelling - which we give below, we

believe that our recent discovery of a general solution of the n-dimensional B-tree problem

[6] is a major breakthrough in dynamic indexing techniques.

Principles of a new generic indexing technology

As a result of ten years research in this area, we have come to appreciate the fundamental

importance of a solution of the n-dimensional B-tree problem. This is essentially because

any data structure which can be expressed as a tree can be represented as a point in an n-

dimensional data space at the deepest level of a set of recursively nested data spaces i.e.

data spaces containing points which represent data spaces at the next deeper level of
recursion.

For example, conventional relational n-tuples can be represented as points in a single, n-

dimensional data space. But if the relation contains a nested attribute, then the discriminator

which distinguishes between instances of the nested attribute is the index key to the data

space of nested attribute instances. This observation has been the basis of our long-standing

hypothesis that an indexing system could be developed of sufficiently wide applicability to

deserve being called generic. It has been the prime motivation for our attempts to develop a

multi-dimensional index technique based on the following principles:

1. the index should be fully dynamic i.e. performance should not degrade with time;
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2. performanceshouldbe fully independentof thedatadistribution;

3. theexact-matchaccesspathlength,andtimesfor single insertion,updateanddeletion
shouldbeatworstlogarithmicin thesizeof thedataset;

4. thereshouldbeaguaranteedfixedminimumin theratioof thesizeof thedatasetto the
sizeof thememoryneededto storeit;

5. thereshouldbeafixed ratiobetweenthemaximumsizeof theindexandthesizeof the
dataset(andthisratioshouldbe<< 1);

6. the indexshouldrepresentarecursivepartitioningof thedataspace(andnot a recursive
partitioning of the points in the space);

7. the partitions should be regular binary partitions of the domains of the data space;

8. the partitioning scheme should allow one partition region of the data space to enclose
another;

9. the representation of the partitioning scheme should allow variable-length, binary keys;

10. the index keys should be generated dynamically.

The first five of these principles are satisfied by a B*-tree. Although it has never been

proved that these principles cannot be satisfied by some data structure other than a tree, no

such structure has yet been devised (with the possible exception of the hB-tree [7] which,

strictly speaking, is not a tree, but a directed acyclic graph). So, in practice, we assume that
these principles dictate that the basic indexing structure should be a 'grow and post tree'
[8].

Principle six is not satisfied by a B-tree, which recursively partitions the points in the data

space, not the data space itself. This choice may not be immediately obvious, since there

are simple and effective techniques for mapping an n-dimensional point on to a linear order

- using, for example, Z (Morton, or Peano) order [9] . Then an ordinary B-tree can be
used, and the worst-case characteristics of the B-tree are automatically inherited. There is

the additional practical advantage that it can be immediately applied in any system which
supports B-trees.
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But this approachis too restrictedfor a generictechnology,which must be able to
efficiently accessextendedspatialobjectsaswell aspoints.Therectangularcoverof ann-

dimensional spatial object can always be mapped to a 2n-dimensional point, but

neighborhood relationships are lost in such a transformation. An alternative approach [9]

resolves the object cover into a set of subspaces, each represented by a unique (e.g. Peano)

code. This allows a recursive linear partitioning of these subspaces, in the same way as

for points in a conventional B-tree. But the method violates principle three because, in

general, the update of a single object cover requires the update of all its constituent parts.
This introduces the uncontrollable access and update characteristics we want to avoid.

(Other well-known methods such as the R-tree and the R+-tree suffer from similar

problems).

There are two other major reasons for the decision to partition the data space itself, rather

than the objects within it. The first is that it is otherwise not possible to contract the

representation of a sparsely occupied dataspace to a set of occupied subspaces.
Comparative studies by [5] have clearly shown this to be a very significant factor in the

efficiency of spatial range queries.

The second is that, in a data space representation, each of the subspaces in the recursive

sequence enclosing a point or spatial object can be defined by a key which is a prefix of that
of the next subspace in the sequence. This is the motivation for principle seven: by

adopting regular (or strict) binary partitioning of the data space, each subspace can be
assigned an extremely compact binary key with this prefix property. In fact, a much more

compact representation than this is possible, since each subspace can be uniquely

represented by a key which defines it relative to the subspace which encloses it at the next

higher recursion level.

It is therefore possible to map the recursive partitioning of the data space to a tree-
structured index in which:

(a) index tree level I corresponds to recursion level I.

(b) each branch node represents a subspace s, and the set of keys in the node represents

the set of subspaces into which it is partitioned, relative to s.

(c) the leaf nodes of the tree represent the subspaces into which the data space is directly

partitioned. The full key corresponding to any one of these subspaces is formed by

concatenating the keys of all the subspaces which enclose it along the path from root to
leaf of the tree.

If this tree can be made to have the properties of a 'grow and post' tree, then it will have

further valuable properties:
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(d) thefull key defining a leafnode(subspace)doesnot needto be any longer than is
necessaryto differentiateit fromthekeysof all otherleafnodes.

(e) whena leafnodeoverflowsandsplits,asthetreegrows, thenthefull key of at least
oneof theresultingnodeswill grow in length.

(f) asthetreegrows, commonkey prefixeswill bepromotedupwardsthroughall levels
of thetree.

The choiceof regularbinary partitionsof the domainsof the dataspaceresults in a
partitioningschemeverycloselyrelatedto thatof quad-trees[4] . A criticism which has
oftenbeenleveledatquad-treesis thattheyarenot 'grow andpost' trees,andthereforedo
not have guaranteedlogarithmic worst-caseaccesscharacteristicswhen mapped to
secondarystorage.But aquad-treecanalwaysbemappedto abinarytree,anda 'grow and
post' treeis a binarytreemappedto an n-ary tree. So it is natural to ask why it is not
possible to map a quad-tree to a 'grow and post' tree?

In fact, a mapping between a quad-tree and a B-tree has been proposed [10] . But the

spatial proximity relationships of the components of the quad-tree are lost in the mapping

from two dimensions to one. To preserve these relationships, a mapping is needed from a

quad-tree to a two-dimensional structure with the properties of a 'grow and post' tree. The

problem lies not with the mapping, but in devising the two-dimensional 'grow and post'

tree. Once this problem is solved, it becomes possible to support large-scale, persistent
quad-trees, and the very large body of computational techniques now associated with them,

within a generic, multi-dimensional indexing framework.

The adoption of regular binary partitioning of the data space also brings a particularly
attractive feature of the quad-tree to the whole supporting framework: the precise

registration (coincidence) of data space partition boundaries in overlay and spatial join

operations - notably in GIS (Geographic Information System) applications. This is
extremely important for the efficient and accurate execution of such operations. And since

this property is a feature of the whole framework, it applies equally to raster and vector
representations of spatial data, and conversions between the two.

It has sometimes been claimed that regular binary partitioning leads to the inclusion of too

much empty space in the representation of skewed data distributions, particularly in the

direct representation of extended spatial objects. We have found this not to be the case [11 ]

The basic reason for this is that, using a recursive partitioning scheme in a dynamic

environment, the positions of the partitions at any level are moved very rarely compared to

those at the level below. They are therefore effectively fixed, and in a dynamic

environment their position becomes almost arbitrary. What is much more important is

that, as already emphasized, it is possible to contract the representation to a set of occupied
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subspaces.It isalsoimportantthatregularbinarypartitioningdoesnot necessarilyimply a
strictcyclic orderin thechoiceof dimension/domainfor thepartitions.

A consequenceof properties(d) and (e) is that, in contrastto conventionalindexing
methods,thebinary key for an indexedobjectcanbe generateddynamically during the

descent of the tree. Its value and length will no longer depend solely on the indexed value

of the object - it will also depends on its degree of similarity to other objects. When a leaf

node overflows and splits, the keys of the two resulting nodes will be extended just as far

as is necessary to differentiate them.

This incremental approach to index key generation opens the way to the indexing of data

entities with different structures in the same index. In conventional indexing, it is assumed
that all the elements in an indexed data set have the same structure. In a relational database,

this structure is stored in the schema, and is used to interpret the contents of the data

elements in the corresponding relation.

New data models, however - specifically nested relational, object-oriented and logic - all

allow structural variation within the elements of a relation, class or predicate respectively.

In order to apply conventional indexing techniques to nested relations or objects, their

structures must be resolved into simpler, fixed structures connected by physical or logical

links. There is as yet no mechanism for a single index on the whole nested tuple or
complex object instance.

However, it is always possible to generate a unique key from a (unique) instance of any

complex structure, by including the structural information as well as the value information

in the key. Then property (d) makes it possible to index very complex structures efficiently

without in general using correspondingly long keys.

Further, a consequence of property (f) is that, if a set of points or objects in the data space

generates a set of keys which are all different within the first few bits, then only these very

short keys need be stored in the index. If, on the other hand, all the keys share a long,

identical prefix, then this prefix will migrate to a single instance in the root of the index tree.

Either way, the index representation becomes extremely compact.

All these properties, however, rest on the assumption that a data structure can be devised

which complies with the ten principles listed above - which themselves require a solution

of the n-dimensional B-tree problem. This is why a solution of this problem is such a key
result.
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BANG indexing

The original motivation for this research was to provide symmetric indexing support for

rules and facts in a deductive database system based on logic [12] [13] [14] }. This proved

to be a very difficult problem so, following the classical precept, we began by trying to

solve a simpler problem: the multi-dimensional indexing of fixed-structure tuples. The

result was the BANG file [15] [16] - a Balanced And Nested Grid file. With hindsight, this
was a misnomer: a BANG index is in fact a balanced tree structure like a B-tree. What

makes it different from a B-tree, and what it shares with the Grid file [17] [18], is that it

partitions the data space itself, rather than the values within the space i.e. BANG index

entries are not data values, but encoded representations of subspaces of the data space.

Apart from the B-tree, the other main source of inspiration for the BANG index design

was linear hashing [19]. This led to the incorporation of two essential elements: variable

length and bit-wise extensible index keys, and the dynamic generation of search keys.

The BANG file represents a set of n-tuples as points in an n-dimensional space. The index
key associated with each point is a Peano code, generated by interleaving the bits of its n

attribute values, from most to least significant, cycling through the n dimensions.

However, the full key is not stored with the tuple. In fact it is not stored at all: it is
generated dynamically during a tuple search, and during data space partitioning. Further, it

is rare that the full key is generated: usually only a short prefix is necessary.

The data pages containing the n-tuples correspond to subspaces of the data space. These

subspaces are also uniquely identified by Peano codes, generated by a sequence of regular

binary partitions of the domains of the data space, cycling through the dimensions in the

same sequence as for the index keys. The Peano code of any subspace is a prefix of the
index key of every data point which it encloses.

The index itself is a balanced, multiply-branched tree structure in which every level

corresponds to a recursive partitioning of the space represented at the level below. Each

branch node represents a subspace which is defined by a Peano code in the index entry

which points to it from the index level above (with the exception of the root node, which by

definition represents the whole data space). Conversely, each index entry within a branch

node represents a subspace which is enclosed by the subspace represented by the branch
node itself.

106



ROOT

NODE
BRANCH

NODE X

BRANCH

NODE Y

ROOT

NODE

.e_ 0 0 1 _1 0 1 0 offsetIx .-=,ITI ollrffioII; ITI I I II I

BRANC.I::"=I MII IOI:lllI M I I IoIT I IdlI V///////// I o.eetINODE Y r table

Figure 1: BANG indexing

Because of the regular binary partitioning sequence, the boundaries of partitions never

intersect--either within the same index level, or between levels (although they may

partially or fully coincide). However, there is nothing to prevent the creation of a subspace

which fully encloses another at the same index level.

An example of a simple two-level partitioning of a data space, and the BANG index

structure corresponding to it, is given in figure 1. Note that each index entry consists of

three components: a pointer to the level below, an integer giving the length of the Peano
code in bits, and the Peano code itself. Note also that the Peano codes defining subspaces at

the lower index level are relative to the codes at the level above. In general, the full Peano

code defining a subspace at index level l is the concatenation of all the Peano codes

encountered in the direct traversal from the root to level I. This leads to an extremely

compact index. (In practice, trailing code bits beyond the penultimate byte boundary are

repeated at the next lower level, since it is much more efficient to perform code comparison
and update operations if the alignment of bits in the byte is maintained).

Exact-match tuple search proceeds downwards from the root in the familiar B-tree manner.

But within an index node, a bit-wise binary search is made for a Peano code which

matches the corresponding bits of the search key. The key is dynamically extended during
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this search: only as many key bits are generated as the length of the longest Peano code

encountered. Note in the example in figure 1 how only very short keys need to be

generated to locate the target data node, however long the actual tuple attributes may be.

Within a data node, tuples are stored in Peano code order. The target tuple can then be

located by bit-wise binary search, dynamically generating both search and target keys.

(Alternatively, each tuple can be stored with its full Peano code as an additional attribute).

It will be seen from figure 1 that there is a potential location ambiguity which arises when

one subspace encloses another. This ambiguity is, however, simply resolved by always

choosing the index entry with the longest Peano code which matches the search key: this

must represent the innermost of any nested subspaces. Figure 1 also demonstrates a

critically important feature of domain indexing: it is not in general necessary to represent
the whole data space in the index, if large tracts of the space are empty. In the example of

figure 1, some exact-match queries will fail at the root index level. In general, therefore, the

average path length traversed to answer an exact-match query will be less than the height
of the index tree. The more highly correlated the data, the greater the advantage of this

feature compared to the conventional range-based indexing of the B-tree.

This advantage is reinforced by the extremely compact index - typically 1%-2% of the size

of the data set for 1K index and data pages - due to the (on average) very short index

entries. This leads to high fan-out ratios and hence a shorter index tree height and

consequent faster access for a given data set.

But the greatest advantage of all is the multi-dimensional flexibility of this design. It can be

used in conventional ways as a one-dimensional primary or secondary index, providing a

smooth upgrade path from B-tree indexing, or it can be used multi-dimensionally when the

query pattern is unpredictable. Figure 2 shows the results of two sets of two small
experiments with A BANG index. The middle table shows the number of data pages

accessed in response to all possible combinations of an exact-match/partial-match query

on an employee relation of three attributes. Identity no distinguishes a tuple uniquely, the
other two attributes do not.
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Employee relation:

l-d: identity no, surname, forename

3-d: identity no, surname, forename

Form of query ]

10,000 tuples 20, 000 tuples
615 data pages 1246 data pages

I,-,I - I 1-°I-
i [ 111 42 1 60

t o :t 4;

I, 1, l, !5,_ I 1 I 22

[ 1849 I 315 -I 3,,= [ Sl, Ii 26' I " ii '3'1 ,3
Ratio 5.9 : 1 Ratio 7.3 : 1

(100, smith, john)

(100, ? , ?)

( ? ,smith, ? )

( ? , ? ,john)

(100, smith, ? )

( ? , smith, john)

(100, ? ,john)
ii

Total: , , JAv. per query:

Figure 2: 1-d versus 3-d indexing

The l-d column shows the number of accesses when the relation is indexed one-

dimensionally on the identity no. attribute (which is a unique key). The 3-d column show

the number of accesses when the relation is indexed multi-dimensionally on all three

attributes. (the surname and forename attribute values are not unique). Assuming that each

query is equally probable, the average number of data page accesses per query is shown at
the bottom of the table. It will be seen that, on average, the single 3-d index is almost six

times faster than a single l-d index. The right-hand table shows the experiment repeated
with a relation of twice the size. The 3-d index is now over seven times faster than the 1-d

index. This is very good news: the larger the relation, the greater the relative performance

improvement. In this example, the improvement is approaching an order of magnitude.

It must be said at once that this is a very crude test, and a number of factors - notably in the

data distribution - could substantially change the outcome. Nevertheless, the performance

advantage of the multi-dimensional approach in this example is so great that it is surely

hard to dismiss. A better testimony is that BANG indexing has been used for several years

now as the only index method supporting persistent data in the ECLiPSe Common Logic

Programming System [20], which is now in use by over 300 sites around the world. So

far, no request has ever been received for an alternative indexing method.
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At this point the reader may justifiably ask: if multi-dimensional indexing is really so much

better, why does the B-tree still exist? One answer is that, in order to take full advantage of

multi-dimensional indexing, practically everything else in the database system must also be

changed, from the setting up of indexes in the schema definition to the query optimizer

and the fundamental relational operators - notably joins. There is therefore an enormous

legacy problem. But the failure of all multi-dimensional indexing methods to date

(including BANG indexing) to guarantee acceptable worst-case performance characteristics

must also have been a major contributing factor. This weakness manifests itself in every

multi-dimensional design in one of two ways: either there is no guaranteed minimum

occupancy of data and index pages, or there is no guaranteed maximum path length for

(single) search and update operations. Although this risk may be acceptable in many

conventional business applications, it is certainly not so in the increasing number of real-
time, mission-critical applications.

The BV-tree

In [6] we showed that this universal problem is a consequence of the basic topological
properties of a data space, or rather of previous erroneous assumptions about the mapping

of a recursively partitioned data space to a tree structure. The solution to the problem,
surprisingly, is an unbalanced rather than a balanced tree.

Briefly, the problem arises when an index node overflows and splits along a boundary
which does not coincide with any node boundary at the next lower index (or data) level.

The choice is then either to choose a different splitting boundary - thereby losing any

minimum occupancy guarantee for the two resulting nodes; or to force a split along the

upper level boundary in one or more lower level nodes - which may propagate recursively

to the bottom of the tree, so that no certain upper limit can be placed on the number of node

splits resulting from a single update.

The nature of the problem is illustrated in figure 1. The root node of the two level index in

figure 1 is created when the original single index node overflows into two nodes X and Y.

The boundary between the subspaces represented by X and Y is chosen so that the

occupancy of both nodes is as equal as possible. But it will be seen that this boundary cuts

through region d at the index level below. In the figure, region d has been assigned to node

X, with the result that a key search for a point P will fail, since there is no entry
corresponding to this point in node Y.

In the original BANG index design [15], the problem was side-stepped by backtracking

up the tree to the next longest entry key (i.e. the next smallest subspace - if such exists)

matching the search key. However, in the worst case this could involve searching the entire

index tree. In [16] forced recursive splitting was suggested as a better performance

compromise, together with algorithms designed to minimize its worst effects. The

maximum number of resulting split nodes in the worst case could then be exactly

predicted, but the price for this was the loss of the minimum node occupancy guarantee. A
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carefulexaminationwill revealthesametrade-off in everyothermulti-dimensionalindex
design.

Thesolutionofferedin [6] to this impasseis not in itself an indexmethod,but a general
result concerningthe representationof a recursivelypartitioneddata spaceby a tree
structure.Thebasicideaisverysimple:insteadof forcinganodeto split, promoteit to the
indexlevelabove.At first sight this may seemillogical, sinceit destroysthe one-to-one
correspondencebetweenthelevelsof recursivedataspacepartitioningandthelevelsof the
index treewhich representsthis partitioning.However,all that it really destroysis the
prejudicethatsuchastaticcorrespondenceis necessary.

Instead, the correspondence is reconstructed dynamically, while traversing the tree

structure. By promoting a node instead of splitting it, its index entry is moved to the root of
the subtree which contains the pointers to the two nodes which would otherwise contain the

split node entries. Thus any index tree search which visits this subtree root can then pick up

the promoted entry - if the search key matches - and follow one of these pointers back

down to the next lower index level. The entry is then included in the set of index entries to

be searched at this level, exactly as if it had been split rather than promoted.

The result, as illustrated in figure 3, may seem paradoxical: an unbalanced tree (a BV-tree)

with the operational properties of a balanced tree. But this is simply because all search and
update operations are effectively carried out on a balanced tree reconstituted from the

unbalanced tree. In figure 3 the subspace boundaries are deliberately chosen to be randomly

shaped, to emphasize that this is a general technique, not a specific index method. A more

detailed account is given in [6], but the main point is that the structure makes it possible to

combine a minimum node occupancy guarantee with guaranteed maximum search and

update path lengths.
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Figure 3: The BV-tree

The worst-case node occupancy is 33% for the BV-tree, compared to 50% for the B-tree,

but this is the maximum which is topologically possible in more than one dimension. In

practice, as with the B-tree, the worst case can always be improved upon by redistributing

the contents of nodes whose occupancy levels fall below some arbitrary value. The average

occupancy is the same as that of the B-tree i.e. around 69%.

The number of nodes visited in an exact-match search, and the maximum number of nodes

split as the result of a single update, is logarithmic in the size of the data set, as in a B-tree.

The number of nodes visited during a single update can however be greater than

logarithmic: in the worst case it is h(h+ 1)/2, where h is the maximum height of the tree.

[N.B. This case was overlooked in [6], where it was claimed that updates can always be

performed in logarithmic time. This is indeed true except in one case, which arises when a

promoted node overflows, and when one of the resulting split nodes can be demoted. The

demotion must be carried out immediately, in order to maintain the dynamic behavior of

the tree. We believe - although have not proved - that this, like the 33% minimum page

occupancy, is a topological inevitability. In practice, this will be such a rare occurrence that
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theaverageupdatetimewill hardlydeviatefrom logarithmic.More important,theworst-
caseupdatetimeremainsentirelypredictable].

It is alsopossiblethat,if a fixed pagesize is used,the heightof the index treemay be
greaterthanthatof theequivalentbalancedtree(see[6] for an analysis). This tendency
may howeverbemore thancompensatedby the fact that the averagepath lengthfor an
exact-matchsearchin domain-basedindexingis lessthantheheightof thetree.

Soif we aretojudge theacceptabilityof multi-dimensionalindexingby comparisonwith
theworst-casecharacteristicsof one-dimensionalB-treeindexing,thereis clearlynow very
little differencebetweenthem.Theimportantpoint is thatmulti-dimensionalindexingcan
now safely support mission-criticalapplicationswith absolutelypredictableworst-case
performance.Best of all, thereis no price to pay for the extra flexibility and average

performance which multi-dimensional indexing gives.

A BANG representation of a BV-tree

We have so far made the implicit assumption that the general properties of the BV-tree can

be implemented in a specific index representation. And if we are to achieve our ultimate

goal of an indexing technology which satisfies all the principles and properties listed above,
we also have to combine this implementation with all the principles applied in BANG

indexing. So the question remains: can such a design be implemented efficiently?

There is not space here to set out the full details, but we hope to show enough to

demonstrate that it is possible to build an implementation which is both efficient and

elegant, with relatively low software complexity. The appendix contains the pseudo-pascal

code for a procedure to perform a key-search within an index node of a BANG index

representation of a BV-tree. Figure 4 illustrates both the modified form of a BANG index
node, and the key-search operation on it. The contents of the ten index entries are set out
vertically rather than horizontally as in figure 1, but otherwise the only difference in their
structure is the addition of the partition level of the entry. This is the index level at which

the entry was originally created, counting the index leaf node level as level 0. The index
node shown is located at level 2, since the highest partition level shown is 2, but the node

also contains two entries promoted from level 1, and one entry promoted from level 0. (In

figure 2, the equivalent would be the promotion of the entry for subspace d from node X at
level 0 to the root node at level 1). We frequently refer to promoted entries as guards.

Before the tree search begins, an array is initialized, which we call the guard set, having

one element for each partition level of the tree, such that array element l corresponds to

partition level I. Each element consists of a record of two fields: the relative length of an

index entry key (i.e. the length relative to the page in which it lies); and the pointer
associated with that index entry. The array is used to hold this information on the longest

entry key of each partition level so far encountered in the traversal of the tree.
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Vertical boxes show page entries.

[_] represents a zero-length entry key.

Horizontal boxes (shaded) show search range for current iteration.

Heavy vertical boxes show set of entry keys matching search key.

Figure 4: Key search in a BANG implementation of a BV-tree

Regardless of their promotion level, index entries are stored in lexical order of their entry

keys, so that the longest key matching the search key can be found by bit-wise binary
search of the index node (entry 7 in figure 4). The range of each iteration of this binary

search is shown by the shaded horizontal bars in figure 4, and it will be seen that the next

matching prefix of the search key is always the first entry in the range. At each iteration, the

relative key length of this entry is compared with the length stored in the array element

corresponding to the same partition level. If the new entry is the longer, its length and

associated pointer are stored in this array element, overwriting its previous contents.

When the binary search within a node at index level l is complete, the next node to be

searched is that pointed to by array element l. Note that array element l may at this stage

simply hold the key length and pointer of the longest matching entry in the node just

searched at level l, or it may hold values carried down from a promoted entry at level (l+1)

- if this entry has a longer key. And such an entry may also have been carried down from

higher levels in the course of the tree search.
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An example

The effect of this simple algorithm is to reconstitute a balanced tree by moving the relevant

promoted entries back to the index level at which they were created. As an example,
consider a search for the point marked + in figure 3. At the root index level (level 2) entries

a s, b I and a ° represent the smallest subspaces enclosing the target point at each partition

level, so the lengths of these entries and their associated pointers are stored in the guard set.

We then follow the pointer in element 2 of the guard set down to the next index level. Here

the only matching entry is a I. But there already exists in array element 1 of the guard set

another entry - b _ - carried down from the level above, and which plainly encloses the

target point more closely than a _ i.e. in a BANG representation, it has a longer key.

So we now follow the pointer associated with b _. Note that this causes the tree traversal to

effectively backtrack up the tree and down another branch, although no previously visited
nodes are revisited. Finally, we see that there are no matching entries at level 0 in the node

pointed to by b _, so we pick up the existing pointer in array element 0, which is the pointer
from entry a ° carried down from the root. Thus a second 'virtual backtrack' occurs. Note

however that the total number of nodes actually visited is equal to the maximum direct path

length from root to leaf of the tree. This is true for all exact-match search paths in a BV-

tree, thus guaranteeing its logarithmic search behavior.

Of course, the complete search and update code is considerably longer and more complex

than that shown in the appendix, but the tree traversal and dynamic tree reconstruction

techniques shown recur throughout.

Conclusion

We can now reasonably claim to have fulfilled all the principles and properties laid down in

our initial list of design requirements. Multi-dimensional indexing really is now a more
flexible alternative to B-tree indexing. But this is not the end of the matter - it is only the

beginning. As we began by pointing out, our true objective has not been to find a

replacement for the B-tree: that is just a spin-off. The main aim has been to develop a basis

for a new generic indexing technology which is capable of supporting much more

generalized data types than those of conventional business applications, and in a scalable

way for large applications. We are confident that, with the technology which we have

assembled above, we can now develop this generalized support. But it is clear that there is a

lot of research still to be done, and whole new areas to be investigated.
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Appendix

procedure search_index_page(page, bottom, top, search_key, guard_set, insertion_point)

{ Initialize the byte offset from the start of the (absolute) search key to the start byte of the

relative search key i.e. to the byte corresponding to the first key byte of the p age entries

}
relative_search_key := search_key + page_level div BYTESIZE;

{ Initialize the bit offset of the start of each entry key in the page, relative to the start of the

first key byte }

start bit offset := page_level mod BYTESIZE;

{ Initialize comparison bit number relative to the start of the first byte of each entry key.

The most significant bit in a byte is numbered as bit O.

Initially, the comparison bit number is set to one less than that of the actual start

position, so that any initial entries of zero length will be correctly treated }
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comparisonbit number:=start bit offset- 1;

while bottom <= top do begin

if length(key(page_entry(page, bottom)))=comparison bit number-start bit offset +
1

then begin

{ This is a matching entry i.e. the complete key of the entry matches a prefix of the

insertion key. Note that there may be several matching entries with identical keys,
provided that they differ in their index node level.

Note also that the presence of a guard of node level l-x in a page of node level l

does not imply that the page must also contain guards of all higher levels l-x+n,
where 0 < n < x }

{ Record the matching entry in the guard set }

level := index_node_level(page_entry(page, bottom));
guard_set.entry[level] := bottom;
bottom := bottom + 1

end

else

if length(relative_search_key) = comparison bit number - start bit offset + 1

then { No further matching entries possible: the search key (region) encloses all
remaining entries in the current search set.

Note that there must be at least one entry in this set, since this point in the code is

only reached if there exists at least one entry in the current search set whose key is at

least one bit longer than the current position of the comparison bit }
begin

insertion_point := bottom;

{ The insertion point lies immediately be__gfR_ the entry numbered bottom in the

page entry table }
return

end

else begin

{ Establish range of entries matching search key as far as the next comparison
bit}

{ Advance comparison bit }

comparison bit number := comparison bit number + 1;

if value(comparison_bit(key(page_entry(page, top)))) = 0
then begin

if value(comparison_bit(relative_search_key)) - 1

then bottom := top + 1 { No further matching entries possible }

{ else all entries in the current search range must match as far as the current

comparison bit: the range thus remains unchanged }
end

else if value(comparison_bit(key(page_entry(page, bottom)))) = 1
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then begin

if value(comparison_bit(relative_search_key)) = 0

then top := bottom - 1 { No further matching entries possible }

{ else all entries in the current search range must match as far as the current

comparison bit: the range thus remains unchanged }
end

else begin

{ Binary searchforfirst entry with current bit set to 1. If this section of code is

entered, there must be at least two entries in the current search range. This
follows from the fact that the program execution must drop through the

preceding code to arrive at this point. This can only occur if the value of the

comparison bit for the top entry is 1, and that for the bottom entry is O. Hence

these two entries cannot be the same. It also follows that there must be at

least one entry in the new search range }

top_limit := top;
bottom_limit := bottom;

repeat
middle := (top_limit + bottom_limit) div 2;

if comparison_bit(key(page_entry(page, middle))) = 1

then top_limit := middle - 1
else bottom_limit := middle + 1

until top_limit < bottom_limit; { end of binary search }

{ Reset lower or upper limit of search range: bottom_limit is first entry with

comparison bit value 1; top_limit is last entry with comparison bit value O}

if value(comparison_bit(relative_search_key))= 1
then bottom := bottom_limit

else top := top_limit

end { Binary search ... }
end { Establish range of entries matching search key... }

end { while bottom <= top }

insertion_point := bottom

{ The insertion point lies immediately _ the entry numbered bottom in the page

entry table }

end {procedure search_index_page }
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